Archive
The new and the new-old: Computers and Woolly Mammoths
Today on boydfuturist: Advances in computing (and one genetic bombshell.)
I’ll begin with some technical advances in computing during the last week or so. First, Kurzweilai.net links to an article reporting that computer component maker NEC has demonstrated 1.15Tb/s optical transmission speeds over 10,000km (or about 6,200mi). Although it’s probably too soon to hope for internet upgrades for consumers (and might be for the foreseeable future, given the United States’ abysmal internet infrastructure) I can at least dream of upgrading my 300kb/s eventually. This sort of hi-speed internet capability will be vital for the increasing mounds of data that are being sent and received thanks to mobile phones, embedded movies, video conferencing, video gaming, and other hi-bandwidth applications.
To handle the increasing amounts of data, both locally generated and transmitted over the internet, computers are going to need more memory. I suppose I’m dating myself to say that I remember when memory was measured in megabytes, and that 16GB of RAM seems outrageous to me even as I installed it for less than $100 in my buddy’s computer. But we’re going to need more, and it’s going to have to fit in increasingly smaller spaces as we miniaturize computers down to the nano scale. Fortunately, researchers at IBM have stored a byte of memory in a mere 12 atoms, or about 100 times as dense as current materials. Until we can safely and cheaply cool home computers to near absolute zero this won’t be much use at home, but it shows that there is potential to pack a lot of memory into very tiny spaces.
What sort of applications could use such vast amounts of data? Lots, it turns out. Erin Rapacki argues that we ought to begin scanning the “real” world. By scanning every object in the real world in 3-D, we could give computers a vast data set that allows them to recognize virtually any object that they pick up. It turns out that this sort of project is being crowd sourced, with websites being set up for people to upload 3-D scans using their Xbox Kinect to form one enormous database. I have to wonder if increasing reliance on 3-D printers will speed up this process, since any object that we want to print from a 3-D printer needs to be scanned (or built as a file) in 3-D to begin with. Imagine one day being able to download the “Sears Hardware Collection” file and printing whatever tool it is you need at will.
Vinod Khosla argues that computers will take over many of the jobs in the healthcare field, resulting in staggering amounts of data transmitted across the world in the blink of an eye. Whether or not he’s right, there’s no question that healthcare is becoming more automated, scans are taking up more data, and genomics is coming along right behind to fill up whatever empty HDDs are left. It turns out that devices are being created that allow people to control robots with their mind. Given the amount of data the brain creates, no doubt finely tuned devices that will give the same or better performance as natural limbs and organs will need to transmit and/or receive large amounts of information as well. However, even as technology becomes more omnipresent, people are already asking questions about its impact on our biological brains. Just as we start to wonder how technology impacts our biological brain, however, comes news from MIT that they have succeeded in creating a synthetic version of a biological neuron. While we’re hardly ready to build a brain from scratch, this suggests that doing so is not out of the question.
Finally, some non-computing news that is huge. Biologists are now saying that they have the ability to sequence woolly mammoth DNA, replace the relevant bits in an elephant egg, and implant what will be a woolly mammoth into a female elephant. Scientists have said this before, but haven’t had a complete genome to work with because their samples were damaged. Difficulty: Woolly mammoths have been extinct for thousands of years. Isn’t this how Jurassic Park started and, if so, can it be long before Paris Hilton is walking around with a mini-T-Rex in her purse?
I, for one, certainly hope not.
Sunday Edition: Abundance, Computing, Animal Communication, and Ethics
Any sufficiently advanced technology is indistinguishable from magic. – Arthur C. Clark, scientist and writer.
With that in mind, let’s talk about magic for a minute. Not so long ago (and in some circles still today) people used to talk about alchemy; turning lead into gold was the usual desire. Without knowledge of elements, atoms, and other basic chemistry, the idea was that one substance could be transmuted into another using the philosopher’s stone which, despite its name, was not always a stone but sometimes an elixir or other substance.
Today, we don’t talk about philosopher’s stones, and rarely talk about turning lead into gold. We could plate lead with gold, of course, but that’s not the same. In theory, one could turn lead into gold by reconfiguring the atoms of lead (82 protons and 82 electrons in six fields, with 126 neutrons in the middle) into atoms of gold (79 protons and 79 electrons in six fields, with 118 neutrons in the middle.) It looks so simple, and indeed we have transmuted lead into gold, but, unfortunately, it take massive amounts of energy to swipe a few basic subatomic particles and turn one element into another.
That notwithstanding, transhumanists hope to convert not just lead into gold, but any element into any other. Like Star Trek’s replicator, scientists hope to use some basic bag of material (it really doesn’t matter what), destroy the material by tearing apart the subatomic particles, and then reassembling them into whatever configuration one wants. Bales of hay could be transmuted into a Ferrari, in theory. The widespread use of that sort of technology leads to what some transhumanists call abundance; the utter irrelevance of ‘(personal) property’ as such because anything can be turned into anything else. I recently ran across the Foresight Institute’s page on molecular assemblers and I’m fascinated. But, by all accounts, the technology is many years away (but would probably represent the most important invention … ever.)
In the meantime, how is abundance looking? The Huffington Post recently ran an article by Peter Diamandis, who argues that technology has already vastly improved the world as a whole. Global per-capita incomes (inflation adjusted) have tripled, lifespands have doubled, childhood mortality has decreased by 99%. His fascinating article goes on to explain why, despite living in vastly better times (as a world community, not just Americans) we’re still focused on the negative.
To power abundance, of either the molecular assembler or the more recognized variety, we’ll need a lot of computing power. Moore’s Law has predicted, accurately, that the number of transistors on a chip would double every couple of years and, as a corollary, that the processing power would double about every 18 months. Every few years, people predict the end of Moore’s Law, but it’s remained accurate since 1965 (and, more generally, for technology since essentially forever according to Kurzweil.) Researchers from the University of South Whales and Purdue have recently created new wires in silicon a stunning one atom tall by four atoms wide. Such small wires could enable quantum computing in silicon; a stunning feat that would continue Moore’s Law into the foreseeable future. Additionally, it makes nano-scale engineering more feasible.
What could we do with all that computing power? Patrick Tucker of the World Future Society recently offered some thoughts. Artificial Intelligence is already being used to replace workers in China, but even professionals like doctors and lawyers are being helped / replaced by automated robots. Managing all the information being created is vital, so AI is being used to search speeches on TV like one searches the web with Google, and also to sift through human genomes to look for similarities. Google is creating self-driving cars. Researchers in China are identifying the cause of traffic jams based on two years worth of GPS data collected from 33,000 cabs. There will be, in short, need for all the computing power we’re inventing.
I’m going to switch gears for a moment to some random new discoveries. Technology Review reports on new advances in carbon nanotubes that are leading to materials that are more conductive and weigh much less than traditional materials. Meanwhile, technology company Lumus has created a pair of see-through augmented reality glasses that are lightweight and project a HD (720p), 3-D, 87″ screen into the wearer’s field of vision. They’re not the most stylish thing in the world, but who wouldn’t love to throw an 87″ TV into their backpack and set it up in the library? Better yet, let’s put these in a bionic eye. Additionally, scientists are trying to use robots to figure out how language evolves in the natural world, including among animals.
In the realm of ethics, Vinton Cerf argues that internet access is neither a human right nor a civil right in the New York Times opinion pages. This is in response, of course, to the argument that internet access -is- a human right, including a UN Report to that effect. Unsurprisingly, the blogosphere (I’ve wanted to use that word for a while) has lit up with responses on both sides. Here’s one example, from JD Rucker.
Finally, if you’re still feeling down about the world, check out Jason Silva’s videos on techno-optimism. The pattern video at the beginning is particularly good.
3-D Printing and Piracy
The New York Times recently wrote an article about MakerBot, a consumer grade 3-D printer that uses plastic to create physical objects like piggy banks and Darth Vader heads. Although the technology for 3-D printing has been around for quite some time, MakerBot is one of the first 3-D printers affordable enough for a home user (although, at $1300 or so, it is an expensive home purchase.) As the article states, MakerBot’s creators encourage its users to share their designs, and one creation can be printed by another user by transferring a data file just like a picture or sound clip is transferred now.
One of the well known side effects of the easy information transferability created by the internet is piracy. Entire websites are dedicated to allowing users to share information, some of it legal; much of it copyrighted, and the users of such sites are often well ahead of attempts by the music, video, and game industries to stop illegal sharing. Complicated digital rights management software, verification codes, periodic authenticity checks, and other creative methods of ensuring that only legitimate users (read: purchasers) of software, games, and movies can use those products have had virtually no impact on the ability of relatively unsophisticated users to share and use unpaid for software. Even lawsuits have not deterred the majority of illicit downloaders. Despite the best efforts of the various distribution agencies, software is often “cracked” (the protection scheme is disabled) within days of release – sometimes the software is available on sharing websites even before release to the general public. Worse, the data protection schemes employed by the distribution companies sometimes cause legitimate users unforeseen trouble, from an inability to use the software they’ve purchased to the failure of other components of their system and, in some cases, the digital rights management (DRM) software has compromised users computers and left them vulnerable to hacks and virii.
The distribution companies insist that piracy has cost their industries hundreds of millions of dollars. Pirates often point out record profits and suggest that the distribution companies are overstating their damages (and particularly when pirates have been sued in court for hundred of thousands of dollars in damages stemming from their sharing a few dozen songs.) Whichever group you sympathize with, there is no disputing that there has been -some- impact on the distribution agencies. However, because only software can take advantage of the internet’s transferability, the impact of piracy has so far been limited to information: Music, movies, books, and the like are sharable whereas physical objects like coffee mugs and televisions have been outside the scope of pirates.
MakerBot, however, introduces the potential for piracy of physical objects, and the existing permissive (if illegal) information sharing culture suggests that users will readily take advantage of MakerBot’s ability to create physical objects on demand. Whereas the CD-RW took the traditionally difficult task of pressing CD’s for sale and allowed users to burn their own music discs for mere pennies, MakerBot and its ilk could put an end to the endless trinkets purchased by people for lack of any other way to acquire those objects. Certainly plastic cups, ping pong balls, and army men are printable by MakerBot, but if those are printable then why not Legos, Tupperware, and ice trays? If plastic can be printed now (and think of all the things made of plastic that you use) how long will it be before steel and glass are likewise printable? What about hybrid objects?
MakerBot introduces the possibility that, before too long, schematics for Playstations will be shared just like the information for Playstation games are now. When hybrid products are printable at home, interesting possibilities arise, including the potential to print a newer, more efficient printer. Technology, by creating the next product that will replace it, feeds on its own momentum and, aside from the cost of materials and the capabilities of the printer, there is no reason why people could not print whatever television, home appliance, or vehicle suits their fancy. After all, if you could print your own Lamborghini for pennies on the dollar as compared to the MSRP, wouldn’t you at least consider the possibility?
If information piracy has taught us anything, it’s that distribution companies cannot stop the sharing of information. MakerBot’s creators have tried to encourage a culture of sharing, and their users seem to be buying into the idea. I doubt that Lego is shaking in their corporate boots just now, but perhaps they ought to consider making something other than a plastic block soon.