Archive for the ‘Singularity Hub’ Category

Rebuilding The Human Body

May 28, 2012 4 comments

I often post articles relating to medical technology, but today I’m going to focus on just those technologies that are available or being researched now that can be implanted into (or onto) humans. Specifically, I am going to talk about several new technologies that promise to restore (and one day replace) faulty biological systems. We will start at the top.


Scientific American reports that scientists have created a retinal implant that can restore sight to some of the blind. Light-detecting cones (called photoreceptors) in the eyes that malfunction cause some forms of blindness. By implanting a tiny 3mm x 3mm chip at the back of the eye, the device can act as artificial photoreceptors and transmit the light that the failing biological photoreceptors no longer do. This implant has been tested on humans (a continuing trial has expanded to five additional cities) but the implant still is not perfect. For one, it requires an external power supply (which sits behind the ear in this model.) For another, only a “narrow field of vision” is restored. Several other companies are also working on solutions.

Already, however, upgrades are in the works. Technology Review reports on a new light-powered implant that promises to remove the external power supply while also granting a much clearer and wider field of vision. However, this device requires relatively bulky external glasses to function (as does another device set for testing next year.) Based on Kurzweil’s exponential predictions, we can expect these devices to double in power and shrink by half in size roughly every two years. By 2020, these devices may very well be fully implantable into a skull, completely replacing the faulty eye.

Not only could one replace the eye, however, the implant could have additional functionality. For instance, Fox News reports on new contact lenses in development for the Department of Defense that offers Heads Up display (HUD) technology in addition to other virtual reality and augmented reality solutions. Other devices, including drones, could transmit real-time battlefield information to each soldier’s implants, giving a true bird’s-eye view of the battlefield and increasing situational awareness immensely. Since this technology is already quite small, integrating it into a false-eye instead of a contact lens ought not to be a very difficult prospect. Of course, this technology is valuable outside of the military as well, so regular folks ought to get a more immersive video game experience and be able to access technology-enhanced vision for their own uses too.



The eyes are hardly the only organs we can replace; scientists recently implanted an artificial, and pulseless, heart inside a man. Instead of a pulsing supply of blood like a regular heart provides, the new heart supplies a continuous stream of circulating blood.  Although the blood vessels, veins, capillaries, and other blood-transferring structures still limit the force with which blood can be circulated, presumably a device like this could increase blood flow on command when a person is engaged in strenuous activity (and without having to get one’s ‘heart racing’ beforehand.)

Not only is the function of the heart being improved upon, but also scientists have recently created the lightest artificial heart and implanted it into a baby. Doctors in Rome replaced a 16-month old baby’s failing heart with a device that weighs a mere 11 grams (the normal adult heart weighs more than 300 grams.) Further, this device has already gained FDA approval, and so is ready for transplantation into other patients.

Perhaps one way to use these continuous-flow devices is to propel tiny devices for surgery or, later, for delivering drugs and maintaining the general health of our bodies. Scientists at Stanford have invented one such device. This tiny device can move through blood vessels and other parts of the body at the doctor’s direction, cleaning out blood clots and the like. This device has some way to go before it is ready for clinical trials, but does provide proof of concept now.


Prosthetic arms have been progressing nicely for several years now (see my Deus Ex article, for instance.) Just recently, however, there have been a number of really exciting improvements in prosthetic arms.

Traditionally (if such a word is appropriate in this sort of fast-moving field) prosthetic arms operate through sensors on the inside of the prosthetic that monitor electrical signals traveling to whatever is left of the patient’s limb; an arm severed above the elbow, for instance, still has muscles that run to the point where the arm was amputated and the sensors detect electrical signals through the skin at the end of the arm. This allowed crude movement at first, and more fine motor control later as the number of sensors increased. There was, however, no sense of feeling in the limb. Now, however, scientists in Vienna have found a way to replace some nerves that originally controlled hand and arm movement and have relocated those nerves to the chest; now the patient, British soldier Andrew Garthwaite, will be able to ‘feel’ through his prosthetic arm when sensors in the arm transmit data to the nerves now relocated into his chest. The movement of nerves ought to also make control of his new arm more fluid and natural. See this video from the BBC:

DARPA (the Defense Advanced Research Projects Agency) and other agencies are trying to improve upon this technology even more by promoting further nerve growth and more feeling in limbs. Wired magazine also has an article describing the technical challenges; the need for polymers that are inoffensive to biological tissue, yet are conductive and strong.

Finally, whether fitted with a prosthetic limb or not, a direct user interface can be implanted under your skin to control other implants (perhaps some of those for bionic eyes, say.) Controlling other implants is going to have to be done manually, though there are several ways to do that. Some, for bionic eyes, could rely on tracking the user’s field of vision to select icons imposed in the field of vision simply by focusing on them for a moment. Others, like for bionic limbs currently, must be pressed manually. The circuit board in the article provides additional functionality, including audio, touch input, and vibration feedback. Of course, ideally limbs could be controlled by thought alone, though we are some way from that. Researcher Albrecht Schmidt says, for instance: “You can also extend social networks into your body — be connected with others with implants, feel pulses of vibration from others,” he added. “This can get very personal… it’s a way of letting someone under your skin.”



Prosthetic legs has also been making progress, though there currently seems to be a divide between prosthetics that replace legs (like those mentioned in the previously linked Deus Ex article) and bionic systems that connect to the legs on the outside and provide more functionality.

Esko Biotics recently sold its first pair of these latter types of legs. This system is not an implant, but instead an exoskeleton. This exoskeleton moves the limbs of those whose spine no longer allows the patient to control their own limbs. This is important because not all leg conditions could be solved via implant; it is not that there is anything wrong with a paraplegic’s legs, per se, but instead with the nerves that control them. A bionic apparatus like this, then, provide benefit where simply replacing the legs would not. reports on a similar exoskeleton that uses a skullcap to read electrical signals from the brain, and then translates those electrical signals into exoskeleton movements for the patient’s legs. This system bypasses the faulty nerves and directly controls the legs very like what an undamaged nervous system would do. However, the signals that reach the scalp and are captured by the cap are not very precise; certainly not as detailed as the original signals. A direct brain-machine interface (or BMI) would be better, but involves currently risky surgery and tinkering with the brain; an always dangerous endeavor.

See the following video for an inspirational video about a paraplegic who completed a marathon (though a number of improvements would be ideal):

For some more implant news, check out this BBC feature that highlights a couple of additional technologies: Can You Build A Human Body?

I will conclude with one last quote from Albrecht Schmidt, who I think captures the moment perfectly: “We’re at a point where implants may become something quite normal,” Schmidt said. “This work will open up discussion as to whether we get implants not for a medical reason, but for convenience.”


Biotic Hands and Programmable Brains

May 20, 2011 2 comments

Every so often I come across an article that really illustrates how near the future is. This week, I came across two of them.

The first article, by Singularity Hub, is about Milo and Patrick, two men who have chosen to have their hands removed and replaced with biotic hands. Both went through extensive surgery (Milo for around 10 years) but eventually they decided that because the surgeries were ineffective, replacing their hands with biotic hands was a sensible alternative. These stories are important for at least three reasons.

First, both surgeries were elective procedures in the sense that neither man had his hand replaced to save his life, or as part of a traumatic incident. Both men had biological hands, although they were damaged beyond reasonable use. Elective replacement for limbs is on tricky ethical ground because, for many people, replacing limbs is largely a procedure of last resort. Previously, limbs were removed to prevent the spread of gangrene, or to save the person from further infection spreading, or for reasons otherwise necessary to protect the person’s life. Here, for at least two men, given one hand of lesser functionality than normal each, replacing a less functional human hand with a biotic hand more functional than their damaged hand (but, seemingly, less functional than a ‘normal’ hand) made sense.

Second, if two men are able to choose to replace a biological hand with a more functional biotic hand, then others should be allowed to make the same decision. Despite the amazing progress made by Otto Bock (creator of the biotic hand), the hand still doesn’t provide all of the benefits of a normal human hand, and offers only one benefit that a human hand does not: 360 degree range of motion at the wrist. However, the limitations on the hand are technological, and with a sensory feedback system like the one Bock is currently working on those limitations ought to be cured quickly. Once a biotic hand is as functional as a biological hand, scientists ought to be able to craft improvements for the biotic hand that include all sorts of functional improvements (increased grip strength, additional sensory inputs like the ability to sense electric currents, more range of motion, enhanced durability) and some more cosmetic improvements (perhaps a small storage space, or wifi, an OLED screen, or other patient-specific enhancements.) Very quickly, a biotic hand will be superior to a normal hand, and not just a severely damaged hand,

Finally, one cannot escape the naked truth that this is what people have had in mind when they used the word “cyborg” for decades. Although it’s true that eye glasses, pacemakers, and seizure-reducing brain implants are all mechanical augmentations to a biological person such that the term cyborg is properly applied, few people tend to think of their uncle with the pacemaker as a cyborg. In part, that’s true because pacemakers are not visible, and even hearing aids are more like eye glasses than biotic hands because they are removable and not an integral part of the human body. These hands, however, are replacing a major part of the body with a clearly mechanical device. The article is unclear whether these hands come with some sort of synthetic skin that masks their metal servos and pivot points, but from the pictures there is just no mistaking that these men are now part robot.

We have reached a point where we can program mechanical devices so that they can communicate with the brain through the nervous system. But what about programing the brain itself?

Ed Boyden thinks he has created a solution for that too. I highly recommend watching the video yourself. The gist is that neurons in our brains communicate via electrical signals. By using engineered viruses to implant DNA encoded with photo-receptor cells taken from parts of algae into brain cells, Boyden can then shine a light onto parts of the brain and only those cells so implanted with photo-receptors activate for as long as the light shines. By activating particular groups of neurons, Boyden can stop seizures, or overcome fear responses that would otherwise cripple an animal. Using fiber optics and genetic encoding, Boyden has found a way to direct the brain to act just as he wants: He has, in essence, figured out how to program a brain, or at least how to hack the brain to add or remove particular functionality.

Further, when photo-receptor cells are implanted and neural activity can be activated via light, the human brain begins to look even more like a computer. By regulating light inputs the cells implanted with photo-receptors activate and produce particular effects depending on the type of cell that they are. With a basic on-off activation scheme, neurons become a lot like the chips in our computer that we activate with electricity turned either on or off. This on-off sequence is represented by 0’s and 1’s in binary code and upscaled to more complicated programming languages. With an implanted light array, programmers ought to be able to create flashing light sequences that affect the brain in preset ways, essentially writing a code that controls parts of the brain. Even if scientists simply read the signals of the neurons, all of human experience ought to be reducible to groups of neurons firing or remaining dormant in complicated patterns. If that is so, then there is no reason why we couldn’t download a stream of our experiences in complete detail, and perhaps eventually upload them as well.

The viral DNA distribution method has also been used to restore sight to mice with particular forms of blindness, apparently at the same level of functionality as mice who had normal sight their entire lives. This distribution system ought to be able to introduce whatever bits of DNA seem useful, essentially taking parts of the DNA from other animals and implanting them into human cells to augment our own biology. The color-shifting ability of a chameleon, the ultra-sensitive scent glands of a snake, or the incredible eyesight of a hawk are certainly products of their DNA, and conceptually ought to be transferable with the right encoding. Boyden is quick to point out that the technology is just getting started, but given the exponential increase in technological progress I suspect that we will see vast progress in their fields, and perhaps even human testing, in the next five to ten years.

Despite the exciting prospects of viral DNA introduction, I can’t help but flash back to the beginning of movies like Resident Evil and I Am Legend. Even for technophiles like myself, some of this technology is a little unnerving. That’s all the more reason to start taking a hard look at what seems like science fiction now and figure out what ethical lines we are prepared to draw, and what the legal consequences for stepping outside of those lines ought to be. Much of this technology, if used correctly, is a powerful enabler of humanity for overcoming the frailties of our haphazard evolutionary path. The very same technology used incorrectly, however, could have dramatic and catastrophic consequences for individual patients and for humanity as a whole.

These two stories indicate the dual tracks of transhumanism: The mechanical augmentation side replaces biological hands with mechanically superior components while the biological enhancement side introduces bits of foreign DNA into our own cells to provide additional functionality. If the rate of progress continues, both of these tracks ought to be commonplace within the next 20 years or so. At the point where we can reprogram the human brain and replace limbs with mechanically superior prosthetics, Kurzweil’s Singularity will be here.

I, for one, am very excited.

Robot Articles

April 20, 2011 Leave a comment

Two interesting robot articles hit my RSS feed today. Though they’re not ‘intelligent’ robots, they do show some interesting characteristics.

First, a robot will throw out the first pitch today at the Phillies game. Now, a robot throwing pitches is not that strange; batting cages have been automated for as long as I can remember (not to date myself too much) and throw at a variety of speeds. Two things seem interesting about this robot, however: First, it’s mobile. Granted, it’s not bipedal (like some baseball hurling Terminator, thank goodness) but that might be a feature instead of a defect; bipeds are inherently unstable and creating a bipedal robot would be great for making it seem more human but otherwise wouldn’t make sense structurally. Considering the trouble most companies have teaching bipedal robots to walk, it’s unsurprising that a robot ‘slapped together’ over a few months has wheels (not to say that robots haven’t gotten much better at walking over the last few years.) The second interesting characteristic is that it’s throwing a pitch in the MLB. Batting cages are unexciting enough that we’ve never (to my knowledge) had a ‘pitching robot’ throw out the first pitch, and so this is a first of sorts. After seeing Watson on Jeopardy!, and now a robot throwing the first pitch in an MLB game, I wonder what other robot’s we’ll see in the media. Not too shabby for some engineers from Penn on short notice. I almost wish the umps would let this robot unleash it’s best pitch once before the game (or during the 7th, whatever.)

Second, and more traditionally robotic, a robot sculpts an aluminum (showpiece) motorcycle helmet out of a block of metal. Although this robot won’t be confused for human any time soon, it does showcase some amazing skills that robots have, even if they aren’t conscious. Here, a robot is crafting far more quickly, far more precisely, and far more intricately than any human would have been able to (particularly in the time that it does.) With a little conscious creativity, it seems like it could put out some artwork that shames its human counterparts.

Categories: banter, Singularity Hub Tags: , , ,